
Unreal to Real: Current Abilities and Knowledge Gaps for

Measuring the Realism of Social Simulations

Mathew Titus1, George I. Hagstrom2, James R. Watson2*

May 2021

1 The Prediction Lab LLC

2 College of Earth, Ocean and Atmospheric Sciences; Oregon State University

* james.watson@oregonstate.edu

Introduction

Many of the most important systems that govern our modern lives are complex adaptive systems (CASs) ?

large, complex, interconnected networks of actors and elements such as the internet, social-networks,

ecosystems, transportation infrastructure, or (financial) market systems. Current practices in scientific

research have made great progress in utilizing agent-based modeling and gathering ?big data? on simulated

analogs of these systems. However, these methods often have difficulty reproducing the most interesting

aspects of the systems, those elements which arise due to agent adaptation, system evolution, or feedback

loops, and so on. These features can lead to emergent and/or nonlinear phenomena of great interest and

they may occur only rarely. Faithfully modeling these systems to enable anticipation of these effects is

crucial in order to determine when and where the system as a whole may change course. There is an

extreme challenge to characterizing and comparing complex social systems (and the various models we

construct for them): unlike purely physical systems, complex social-systems are comprised of numerous and

overlapping local causal neighborhoods (or in other words, a group of system elements that work in concert

to control another agent or group?s behavior), and there are no clear delineations/borders between

subsystems. It is not at all obvious to know how well a given model captures the progression from local

interactions to multiscale feedback, coherent group action, or a critical shift in a macroscopic property.

1

In this project, our aim was to answer the following research questions: 1) Can we develop formal

methods/metrics that can be used to rank models/simulations based on how well they

capture/reflect/allow for the understanding of the complexity of a given real-world system? 2) In a

competition of models, are there methods or metrics to evaluate which model/simulation is closest to the

truth? These questions relate to whether a real-world social system that is ?open? can ever be accurately

or usefully modeled, where models are in essence ?closed-world? approximations.

Any complex system can be thought of as being comprised of numerous local causal neighborhoods

(LCNs), and these modules interact with each other over time and across scales and can come and go as

system dynamics evolve. Models are typically created to capture a particular dynamic, and then draw

conclusions on the mean behavior of the entire population. But what if non-linearity or hidden structure in

the empirical system create a disparity between those low-level interactions which our model represents

well and the phenomenon of interest? New methods for comparing systems based on their causal structure,

rather than their accuracy in representing any particular aspect of the system, are being developed and

this project aims to identify the limits to the state of the art in this respect. We will test methods for

identifying exactly which LCNs are being represented, and in doing we will be able to rank models based

on their usefulness for answering a given question. More specifically, to answer the research questions

above this project will:

1. Develop new approaches to deconstructing data from complex systems (or a model of a complex

system) into LCNs;

2. Create new methods for mapping LCNs to one another and

3. Advance new metrics of the goodness and dimensions of fit of models of a given complex system.

These problems have been partially addressed in their own right. Local causal neighborhood or ”Markov

blanket” detection (Friston 2010, 2012, 2013; Aliferis 2003, 2010; Tsamardinos 2003a, 2003b) and causal

Bayesian network discovery (Ellis 2012; Mani 2004; Guyon 2007) have been shown to extract variables?

causal dependencies from raw data. This procedure can serve as a generator of group-level features (the

Markov blanket and its interior state). These high-level features are the units whose dynamics we want to

learn. The tools of unsupervised feature extraction (see e.g. Robnik-S̆ikonja 2003; Wu 2018; Titus 2019)

have been used to perform feature discovery and/or determine feature relevance in the face of a large

number of redundant or irrelevant features. These tools then allow us to build up the causal network of a

complex dynamical system, extract the interacting units, and learn the policies that control the evolution

of the units? states. Finally, by transferring these policies to a target system which may be open, it is

2

possible to measure a given model?s ability to anticipate causal events at a variety of scales, giving a

quantitative measure of model fitness that respects real-world complexity.

In this paper we describe advances to these approaches to deconstructing data from complex and adaptive

social-systems. Our overarching goal is to identify the state of the art in terms of our ability to characterize

complex adaptive social systems, whether real or modeled, and in doing so providing an ability to answer

the research questions stated above. Another major goal is to use this exercise to identify knowledge gaps

and research opportunities for DARPA to pursue.

Research Approach

To objectively and quantitatively compare complex adaptive social-systems we have focused on methods

that reveal causal structure. Instead of purely statistical approaches used both classically and in relatively

new machine learning approaches, for example that leverage various measures of error or accuracy: R2,

mean-square error, receiver-operator characteristic, F1 score... etc., our approach leverages new abilities to

detect the causal structure of a give complex system. Specifically, we have explored abilities to describe

complex adaptive social-systems in terms of:

• Actors and relationships,

• Policies,

• Actions,

• States.

We assume all complex adaptive social-system are comprised of distinct actors that influence each other

through various relationships. This is a standard and basic representation of a complex adaptive

social-system. We go further and assume that each actor has a state that they occupy at any given point

in time, actions that they can take, and policies that govern which actions are taken. Policies can be

thought of as discrete probability density functions, as in Fig. 1A. An individual’s policy (i.e. the

probability of taking a certain action) changes over time, as a function of the environment they find

themselves in. The environment is strictly defined in terms of other actors that are within the subject

actor’s Local Causal Neighborhood (see Fig. 1B) . This is happening for all actors comprising the system,

constantly through time. As a consequence one can imagine the dynamic process described in Fig. 1C.

3

Figure 1: A) Policies for a given actor are simply the probabilities of taken various actions Ai. B) The

probabilities that comprise a given actor’s policy are influenced by other nearby actors – i.e. those within

the local causal neighborhood. C) Ultimately, policies determine which actions are taken, which impact the

state of each actor, which updates the local environment (i.e. the Local Causal Neighborhood) of each actor.

The whole process repeats itself.

Given this framing of the complexity of social-systems, we are able to define a simple typology that spans

two axes: the first axis is the dimensionality D of the policy/action space. Essentially this is the number of

distinct actions that a given actor may take. The second axis is the size of the system in terms of the

number of actors N . In this N and D space, we have defined three end-member case-studies: 1) a simple

low N and low D flocking model of collective behavior; 2) competitive sports systems with low N but high

D; 3) online social-networks such as Twitter that have low D but high N and finally 4) real-world system

that have both high D and high N . In this project, we have used case-studies 1, 2 and 3 to answer the

research questions posed above. Certainly, a major step forward will be to apply the methods developed

and tested in this project on data from a (large, dirty and uncertain) real-world system (see the discussion

section for more on this).

4

Figure 2: Typology of complex adaptive social-systems based on the dimensionality of the policy/action

space and the size of the system (in terms of the number of actors).

5

1 Theory I: Causality and its Measurement

1.1 Definitions and background

To start, we review the fundamental objects required to study causal networks, touching on the integral

probability metric approach to causal detection.

1.1.1 Probability and causation

Definition 1 (Probability space) Let Ω denote a set with a Borel σ-algebra B, representing the

collection of outcomes that might be realized by the system under study. A probability measure PΩ, or P if

the space is understood, is a Borel measure mapping elements of B to [0, 1] with P (∅) = 0, P (Ω) = 1, and

subadditivity: P (∪iAi) =
∑
i P (Ai) if the sets Ai are disjoint. The triple (Ω,B, P) is a probability space.

In the following capital letters X, Y , . . . will refer to random variables and lowercase letters x, y, . . . will

denote sampled values of those random variables. In particular, if X is a real-valued random variable,

X : Ω→ R, then the real value X(ω), ω ∈ Ω is simply written x. We assume the reader is familiar with the

notation for conditional probability distributions and use the language ”probability distribution of X given

Y ” to refer to the distribution P (X|Y). The symbol X := {X,Y, . . . } will denote the collection of all

random variables that we define on the probability space. The capital letters U , V , and W will refer to

events, or subsets of Ω that are measurable in the above sense.

While the individual possible outcomes ω are the fundamental expression of the system’s state, we are

interested in a family of variables {Xi}i∈I for an index set I and how those variables relate to each other.

For this reason we will work with the σ-subalgebra of B generated by X = {Xi}I , meaning we restrict our

attention to the topology generated by sets of the form
∏
i∈I X

−1
i (Bi) where Bi ⊂ R is open. We call such

sets observable, as they are defined in terms of the variables we measure, and in the following values of X

will be referred to as outcomes, observations, or events.

We say that a variable Y causes X if the distribution of X given Y varies with the value of Y : for some

y1, y2 ∈ R,

P (X|Y = y1) 6= P (X|Y = y2).

For example, if X describes whether or not an individual has lung cancer (X = 0 if no tumor has formed,

X = 1 otherwise) and Y describes the number of cigarettes smoked per year by the individual, we find in

practice that P (X = 1|Y) increases greatly as Y increases. This indicates that Y (smoking) causes X.

6

Of course, the causation may not be direct, meaning that there may be other variables Z which, if

controlled for, would account for the causal link from Y to X. (For example, Z could be the number of

mutations that have occurred in the lung tissue. For smokers where Z remains on par with the general

non-smoking population, those with very large Y value may show no increase in P (X = 1|Y,Z).) In this

case we would say that Y is an indirect cause of X, and we express this mathematically as conditional

independence.

Definition 2 Two variables X and Y are conditionally independent given the variable set Z, expressed

either as X ⊥⊥ Y |Z or as I(X,Y |Z), if the conditioned distribution P (X ∈ U, Y ∈ V |Z ∈W) factors as

P (X ∈ U, Y ∈ V |Z ∈W) = P (X ∈ U |Z ∈W) · P (Y ∈ V |Z ∈W)

for all values x, y, and z such that P (Z ∈ U) > 0.

If no such Z exists within our set of random variables X we say that Y is a direct cause of X.

1.1.2 Causal networks

We will now identify the elements of our system (random variables X1, X2, . . .) as vertices in a directed

acyclic graph (DAG). Consider the graph G = (V, E) with vertices V and edges e ∈ E representing ordered

pairs (vi, vj) of these vertices. The notation v → w indicates that the vertices v and w are connected by an

edge (v, w) = e ∈ E originating at v and terminating at w. We associate the system’s individual random

variables to individual vertices in V in a one-to-one manner (Xi 7→ vi ∈ V), and recall P is the probability

distribution defining the joint distribution of the Xi.

Definition 3 For a vertex v in V we write Pa(v) for the parents of v, {y ∈ V : (y, v) ∈ E}, and Ch(v) for

its children, {y ∈ V : (v, y) ∈ E}. The set PC(v) is simply the union Pa(v) ∪ Ch(v).

The following definition connects the network structure of G to the dependence structure of P .

Definition 4 The graph G satisfies the Markov condition (with respect to the joint distribution P) if a

vertex v ∈ V is independent of its non-descendants when conditioned on Pa(v), the parents of v. In

particular, if Y 6∈ PC(X), the condition

X ⊥⊥ Y |PC(X). (1)

holds. In this case the couple 〈G,P 〉 is called a Bayesian network.

7

Figure 3: Left: An example Bayesian network. Right: the CPN for the same system.

Note that a DAG that satisfies the Markov condition for our system, i.e. a Bayesian network for (Ω,B, P),

can have many superfluous edges. Indeed, adding another edge to G connecting a variable Y to X simply

lowers the number of required conditional independence statements (as Y is now in PC(X)), and so the

modified network is also a Bayesian network for P . For this reason we work with the following definition:

Definition 5 A Bayesian network 〈G,P 〉 such that every edge (v1, v2) ∈ E represents a direct cause is

called a causal probabilistic network, or CPN.

Definition 6 (Faithful Distribution) The graph G = (V, E) is faithful to the probability measure P over

the random variables X if and only if its structure captures every independence relation among the elements

of X: if X1, X2 ∈ X are associated to v1, v2 ∈ V, respectively. Then (v1, v2) 6∈ E if and only if there exists

Z ⊂ X such that X1 ⊥⊥ X2|Z.

The joint probability distribution P may have several CPNs, but different networks may all provide faithful

representations of the statistical properties of P .

1.1.3 Integral probability metrics

Recall that testing the conditional independence statement X ⊥⊥ Y |Z can be done, in essence, by fixing the

value of variable(s) Z and showing that the distribution of X is unchanged as Y varies. (In this case, either

Y is not a cause of X or it is an indirect cause that is mediated by the variable(s) Z, hence X being

unaffected as long as Z is fixed.) For this reason we turn to integral probability metrics (IPMs), tools

designed to measure the distance between probability distributions.

Symbolically, our task boils down to determining whether the distribution P (X,Y = y1|Z = z) is the same

as P (X,Y = y2|Z = z) for each choice of y1 6= y2 and z. In general, this is impractical for most systems

which we can only passively observe since we lack the ability to measure samples with Z fixed at the value

z while Y varies over a representative sampling of its distribution. However, when observing simulated or

controlled environments this is possible, the only cost being the time and energy needed to conduct

repeated trials.

The metric on distributions that we consider in the following is the Wasserstein metric:

8

Definition 7 Given a complete, separable metric space E with metric dE and σ-algebra B, write M for

the space of all probability distributions on E. If ν1, ν2 are two distributions in M, define the Wasserstein

distance to be

Wd(ν1, ν2) := inf
π

(Eπ [dΩ(x, y)]) (2)

where the infimum is over distributions π on E × E with marginals ν1 and ν2 in the first and second

coordinates, respectively.

IPMs originated as a theoretical implement, used in various transport problems [17]. However, by applying

the Kantorovich-Rubinstein duality theorem we can express 2 instead as

Wd(ν1, ν2) = sup
f∈FL

∣∣∣∣∫
E

fdν1 −
∫
E

fdν2

∣∣∣∣ , (3)

where FL is the family of Lipschitz functions, {f ∈ CE : |f(x)− f(y)| ≤ dE(x, y)}. As described in [12],

this is amenable to estimation through essentially a Monte Carlo sampling method: Let {x(i)}N1
i=1 be

independent samples from ν1, and {x(N1+j)}N2
j=1 independent samples from ν2. Then writing ν̂i for the

empirical measure drawn from of νi, the estimator

Ŵd(ν̂1, ν̂2) := sup
α

 1

N1

N1∑
i=1

αi −
1

N2

N2∑
j=1

αN1+j

 , (4)

where the sup is taken over{
α = (αi)

N1+N2

i=1 : |αi − αj | ≤ dE(x(i), x(j)) for all i, j
}
, (5)

converges to Wd(ν1, ν2) as N1, N2 →∞. [12]

Convergence here is a result of the discrete measure ν̂1 := 1
N1

∑N1

i=1 δx(i) converging weakly to ν1:

∫
E

fdν̂1 =
1

N1

N1∑
i=1

∫
E

f(y)δx(i)(y) =
1

N1

N1∑
i=1

f(x(i))→
∫
E

fdν1

and likewise for ν̂2 → ν2. Note that the constraint on α is precisely the condition that α is the restriction

of a Lipschitz function f on E to the points {x(i)}.

1.1.4 The EZK dependency measure

The Wasserstein metric provides a basic measure of distance to investigate how the (family of)

distributions P (X,Y = y|Z = z) varies with y; the paper [3] defines a new, asymmetric dependency

measure based on this IPM, which quantifies the influence of Y on X given Z. We call this the

9

Etesami-Zhang-Kiyavash Dependency Measure, or EZK measure, after the paper’s authors. Among other

things, this measure is computable for systems where one can perform interventions, and the computational

complexity does not increase with the dimension of the space E. However, the major benefit of using the

EZK measure is that, in addition to detecting direct causal relationships, it explicitly determines the

direction of the dependence. We describe now its form and a method of estimation as described in [3].

To begin, we introduce some new notation particular to this section. Let X = {Xi} be the set of observed

random variables taking values in the complete, separable metric space E. We will write xK := (xi)i∈K for

a set of values in E that will be used to condition the variables Xi, i ∈ K. We also write xK(i) for the ith

coordinate, xi. Here µi ∈M denotes the distribution of Xi, and we write µi(xK) for the probability

distribution of Xi when the measured system state X is conditioned on the event {Xj = xj for each j ∈ K},

i 6∈ K.

Definition 8 Define the set

C(x, y) = CKi,j(x, y) =
{(
xK∪{j}, yK∪{j}

)∣∣∣ xK∪{j}(m) = yK∪{j}(m) for m ∈ K;

xK∪{j}(j) = x; yK∪{j}(j) = y
}

to be ordered pairs of conditioning values that agree on K but take on the values x, y ∈ E, respectively, in

the j coordinate. Then the EZK measure of the conditional dependence of Xi on Xj conditioned on

{Xk : k ∈ K} is given by

cKi,j := sup
C(x,y)

Wd

(
µi

(
xK∪{j}

)
, µi

(
yK∪{j}

))
dE(x, y)

. (6)

Notice that if Xi and Xj are independent given variables indexed in K, this measure is zero. In the

following we consider a value of 1 or more to indicate a notable causal relationship. For examples of the

additional favorable traits of this measure and examples of its use, see [3].

As with the Wasserstein IPM estimator of (4), we can construct an approximation of cKi,j using random

sampling. One produces independent samples {z(k)} of the system X without conditioning. The values of

Xm,m ∈ K∪{j} then are recorded as
{
x

(k)
K∪{j}

}
, and for each (k, `) ordered pair we create the condition set

x
(k)
K∪{j} =

z
(k)
m for m ∈ K,

z
(k)
j for m = j,

y
(`)
K∪{j} =

z
(k)
m for m ∈ K,

z
(`)
j for m = j.

Note that y
(`)
K∪{j} differs from x

(k)
K∪{j} only at j. Then one may calculate Ŵd

(
µ̂i(x

(k)
K∪{j}), µ̂i(y

(`)
K∪{j})

)
,

measuring how much µi changes when Xj changes from z
(k)
j to z

(`)
j , while {Xk : k ∈ K} is fixed at z

(k)
K .

10

Suppose we construct N such samples
{
x

(k)
K∪{j}

}
. Then [3]claims the estimator

ĉKi,j := max
1≤k 6=`≤N

Ŵd

(
µ̂i

(
x

(k)
K∪{j}

)
, µ̂i

(
y

(`)
K∪{j}

))
dE

(
z

(k)
j , z

(`)
j

) (7)

will converge to the EZK measure defined in (6) as N,N1, N2 →∞.

1.1.5 Computation of the EZK measure

Unfortunately, as written this estimator exhibits a numerical instability; for samples z(k), z(`) whose

realizations of Xj are very close, the small size of the denominator dE

(
z

(k)
j , z

(`)
j

)
controls the computed

value of ĉKi,j . For simplicity let’s take N1 = N2. If X1 and X2 are independent standard normal variables,

and we consider K = ∅, then

Ŵ
(k,`)
d := Ŵd

(
µ1

(
x

(k)
{2}

)
, µ1

(
y

(`)
{2}

))
(8)

is an imperfect estimate of an integral against the zero measure, as both arguments of Ŵd are standard

normal distributions. Hence the true EZK measure c∅1,2 is zero, but in practice our estimator (8) is roughly

of order N
−1/2
1 , with fluctuations of the same order.

The denominator dR(z
(k)
2 , z

(`)
2), on the other hand, is a sample of the difference of two normally distributed

variables: Z1 −Z2, with Zi ∼ N (0, 1). As the sum of two normals is again normal, we find dR(z
(k)
2 , z

(`)
2) is

typically of order O(1), but can be much smaller. In particular, for a small positive constant 0 < ε� 1,

P
(
dR(z

(k)
2 , z

(`)
2) < ε

)
= O(ε).

As a result, if dR(z
(k)
2 , z

(`)
2) is less than N

−1/2
1 the estimator will be significantly larger than the theoretical

value, and the use of a strict maximum in (7) means that these fluctuations, despite their rarity, will control

the value of ĉKi,j . For example, Figure 4 shows the semi-log plot of Ŵ
(k,`)
d /dR(z

(k)
2 , z

(`)
2) against dR(z

(k)
2 , z

(`)
2)

for N1 = 50, N = 500. We clearly see that small values of the dR distance lead to very large values of ĉ∅1,2

To overcome this, we filter out those ordered pairs (k, `) such that dE(z
(k)
j , z

(`)
j) is less than C/

√
N1 +N2

with C a constant chosen so that the maximum value of Ŵd is of the same order as its median value.

Below we take C = 8. NB: One should be careful not to take C so large that the odds of (k, `) being a

valid pair become low enough to affect the runtime of the algorithm (due to the burden of resampling zk).

Another large improvement made to the general approach outlined in [3] is achieved by restricting

ourselves to target variables Xi which take values in a one-dimensional space (R or S1; we consider E = R

in the following). This allows us to compress the number of constraints: impose an ordering on the

{xi}N1+N2
i=1 so that for i = 1, . . . , N1 +N2 − 1, xi is adjacent to the point xi+1 in the sense that (xi, xi+1)

11

Figure 4: Sample values of log
(
Ŵ

(k,`)
d /dR(z

(k)
2 , z

(`)
2)
)

, whose maximum defines the estimator ĉKi,j in [3],

plotted against the distance dR(z
(k)
2 , z

(`)
2). For this sampling we took N = 500 and N1 = N2 = 50. A

positive y-value corresponds to an estimate of ĉKi,j consistent with a causal relationship Xj → Xi. We adjust

the algorithm, removing (k, `) pairs whose dR(z
(k)
2 , z

(`)
2) value falls below 8/

√
N1 +N2 = 0.8 (the vertical

dashed line).

12

contains no xj . Then notice that any α satisfying

|αi − αi+1| ≤ dR(xi, xi+1), i = 1, . . . , N1 +N2 − 1,

is necessarily (a restriction of) a Lipschitz function, and so obeys the full set of constraints (5).

This observation allows us to take the number of constraints on the linear optimization problem (4) from

O((N1 +N2)2) to O(N1 +N2), significantly reducing the computational complexity. See Algorithm 1 for

pseudocode of the algorithm.

Several other computational improvements have been made, e.g. we transform the problem in order to

simplify the set of bounds, mollifying the linear programming problem of Algorithm 1. We refer the

interested reader to the codebase at [14].

Algorithm 1 EZK Dependecy Measure

Input: i, j,K, N,N1, N2

Output: ĉKi,j

1: Initialize S = ∅

2: while |S| < N do

3: Sample z(k) from X

4: for ` < k do

5: if dE

(
z

(k)
j , z

(`)
j

)
> 8/

√
N1 +N2 then

6: Generate N1 samples from µi

(
x

(k)
K∪{j}

)
and N2 samples from µi

(
y

(`)
K∪{j}

)
.

7: Solve for Ŵ
(k,`)
d := Ŵd

(
µi

(
x

(k)
K∪{j}

)
, µi

(
y

(`)
K∪{j}

))
using linear programming.

8: Record Ŵ
(k,`)
d and add (k, `) to the set S.

9: end if

10: end for

11: end while

12: Take maximum to find ĉKi,j

1.2 The hiton_ezk package

The approach of Algorithm 1 gives us a method for testing conditional independence between two variables,

and from now on the conditional independence notation will be defined as (abusing notation slightly)

Xi ⊥⊥ Xj |Z = I(Xi, Xj |Z) := {ĉZi,j < 1}. (9)

13

One can build off of this in a number of ways in order to discover the local causal structure of the CPN

about a given variable Xi; we base our approach off of one of the many variants of the Generalized Local

Learning algorithm described in Aliferis etal. [1]. In particular, we use the Interleaved HITON-PC

algorithm with symmetry correction.

In short, we fix a variable Xi to learn the local causal neighborhood of (i.e. its parents and children in a

faithful DAG G) and begin by initializing the two sets of variables OPEN= {Xj : j 6= i} and TPC= ∅. We

then test, for each j 6= i, whether the two variables are independent: I(Xi, Xj |∅) = {ĉ∅i,j < 1}. If

I(Xi, Xj |∅), then the variable Xj is removed from OPEN. Those that are not removed can now be placed

in order of descending dependence on Xi (descending ĉ∅i,j value).

Next, we repeatedly add the leading variable from OPEN to TPC, the set of potential parents and

children, and test the condition I(Xi, Xj |Z) = {ĉZi,j < 1} for each subset Z ⊂TPC. If there exists some set

Z for which ĉZi,j < 1, then we consider Xi causally independent of Xj conditional on Z and remove Xj from

TPC. If not, we test each member Xk of TPC for I(Xi, Xk|Z) for all subsets Z ⊂ TPC containing Xj , as

adding Xj to TPC allows for new conditional independence tests.

This approach reflects a theorem in [11], which states that there is an edge between Xi and Xj in their

Bayesian network if and only if the variables are conditionally dependent given Z for all subsets

Z ⊆ X\{Xi, Xj}. (NB: In practice the number of variables in TPC can become significant, and

conditioning on each subset Z in turn becomes onerous, as there are 2|TPC| such sets. Hence, in practice we

have an upper limit M on the size of Z, and have taken M = 5 in this work. However, the combinatorics

involved can be alleviated through parallelization.)

We continue this process until OPEN = ∅ and each member of TPC is tested for conditional independence

against the other members of TPC. The end state of the set TPC is then a set containing PC(Xi), though

it may potentially contain other variables. See Algorithm 2 for pseudocode.

Once this process has been completed for each variable Xi we can combine the results to construct the

entire CPN associated to the system (Ω,B, P) and its random variables X by performing the symmetry

correction: writing TPCi for the output of Algorithm 2 when applied to Xi, we compare TPCj for each

member Xj ∈TPCi; if Xi ∈TPCj then either Xi → Xj or Xi ← Xj , otherwise Xj 6∈ PC(Xi) (see [1] for

further details). See Algorithm 3 for pseudocode.

Our implementation of the algorithms described in Algorithms 1, 2, and 3 have been released in the

Python package hiton_ipm, which the reader can install with the bash command

python3 -m pip install hiton_ipm.

14

Algorithm 2 Local Causal Network

Input: i,N,N1, N2

Output: TPCi

[1] Set TPCi = ∅, OPEN = X\{Xi}.

for all Xj in X\{Xi} do

Calculate ĉ∅i,j . . Calling Algorithm 1

if ĉ∅i,j < 1 then

Remove Xj from OPEN.

end if

end for

while OPEN 6= ∅ do

Find j = arg maxk ĉ
∅
i,k.

OPEN ← OPEN \{Xj}.

TPCi ← TPCi ∪ {Xj}.

for all subsets Z ⊂TPCi do

Calculate ĉZi,j . . Calling Algorithm 1

if ĉZi,j < 1 then

Remove Xj from TPCi.

Exit for loop.

end if

end for

end while

Algorithm 3 HITON-EZK

Input: N,N1, N2

Output: CPN G for (Ω,B, P)

for all Xi in X do

Calculate TPCi. . Calling Algorithm 2

end for

for all i, j such that Xj ∈ TPCi do

if Xi 6∈ TPCj then

Remove Xj from TPCi.

end if

end for

15

While the documentation gives guidance on the purpose and use of the package, we note that in order to

compute the EZK measure one must be able to sample system states with certain variables conditioned

and the others drawn from random distributions (in particular, this is how draws are made from the

µi

(
x

(k)
j

)
distributions). Therefore, the user must define a distributions value in the input parameters,

defining how each variable will be sampled. This is used in the eliminate method of the package with an

array {xk}k∈K of conditional values (to determine the values one fixes the {Xk}k∈K at) to create input

system states. That is, each variable at the start time (potential parents of the target variable, Xi) are

either perturbed according to distributions or conditioned if they belong to K. These starting values are

then used to generate an output value of the variable of interest, Xi, in the provided simulator function.

This approach is particular to working with dynamical systems; this is expanded upon below in Subsection

2.1.2.

16

2 Theory II: Markov Blankets and System Mapping

Once one has the CPN G for a system (Ω,B, P) in hand, it remains to

• describe the functional form of the causal relationships,

• generalize these functions across scales, and

• use this description to determine how well the (source) system reflects the behavior of another

(target) system at a given scale.

To move from the microscale dynamics of individuals to larger scales, we calculate the Markov blanket of

the individual, which forms its interface with the rest of the system. This can have its Markov blanket

computed in turn, and so on, to create a nested series of subnetworks of G. For each such subset, we will

apply statistical learning tools to approximate the subset’s dynamic with a policy function, and, finally, we

calculate the likelihood of a target system’s activity (e.g. empirical data from an open world system)

according to that policy. This quantifies how well the closed world system that we study (source system,

represented by G) reflects the target system at a given scale of interest.

In the remainder of this section we define Markov blankets and note their key characteristics, formalize the

cross-scale approach, and describe in general terms the goal of policy learning. Finally, the formalism for

system mapping is described.

2.1 The Markov Blanket

2.1.1 Preliminaries and definitions

Given a DAG G = (V, E), a path in G is a sequence of distinct vertices (vi1 , vi2 , . . . , viJ) such that

successive pairs of vertices have an edge between them (either vik → vik+1
or vik ← vik+1

for

k = 1, . . . , J − 1). Given a path in G, a collider is a vertex vik such that both its edges are incoming:

vik−1
→ vik ← vik+1

.

Definition 9 (d-separation) We say that a set Z d-separates a path in G if there is either

1. a chain of vertices v1 → v2 → v3 or a fork v1 ← v2 → v3 with the middle vertex v2 in Z, or

2. a collider v1 → v2 ← v3 such that v2 and all its descendents are not in Z.

17

The set Z is said to d-separate X and Y if every path from X to Y is d-separated by Z.

This definition arises in Pearl’s treatment of causal systems [6, 7], and connects the graphical

representation of the system to its dependence relationships by the following theorem, found in [11].

Theorem 1 The condition I(X,Y |Z) is equivalent to the variables X and Y being d-separated by Z in a

faithful CPN of (Ω,B, P).

For simplicity in what follows we define Sp(X), the spouses of the variable X, to be those variables that

share a child with X:

Sp(X) = {Y ∈ X\{X} : Ch(X) ∩ Ch(Y) 6= ∅}.

In terms of a faithful CPN (G,P), w is a spouse of v if and only if there exists a vertex u such that

v → u← w.

Definition 10 (Markov Blanket) The Markov blanket (MB) of X ∈ X is formed by the parents,

children, and spouses of X:

MB(X) := Pa(X) ∪ Ch(X) ∪ Sp(X) (10)

For a subset H ⊂ X the Markov blanket, written MB(H), is the set(⋃
X∈H

MB(X)

)∖
H (11)

of causes, effects, and spouses of members of H, which do not already belong to H.

By Theorem 1 and Definition 10, one sees that the Markov blanket MB(H) is the minimal set of vertices

that d-separates the vertices of H from the rest of the CPN, X\{MB(H) ∪H}.

Corollary 1 Given a subset H ⊂ X, the Markov blanket MB(H) is the smallest set of variables such that

for any Y 6∈MB(H) ∪H and any X ∈ H, I (X,Y |MB(H)) holds.

In practice, this means that if one is interested in approximating the state of H using information from

elsewhere in X, one only needs to consider the values of Xi ∈MB(H). This forms our approach to learning

policies in subsection 2.3.

18

2.1.2 MBs for dynamical systems

The above definitions of MB(X) and PC(X) notwithstanding, the variables of a dynamical system Xi are

observed as time series Xi = (. . . , Xi,−1, Xi,0, Xi,1, . . .) = (Xi,t)t∈Z and this significantly simplifies the task

of calculating MB(Xi,t). We make the assumption that causal relationships obey the arrow of time: if

Xi,s → Xj,t, then Xi must occur strictly prior to Xj , i.e. s < t. For any given system it is helpful to have

an estimate for the speed of information transfer (δt) so that one can limit the potential causes Xi,s of Xj,t

to those variables observed at time s < t− δt.

In physical systems, for example, we know (by Newton’s third law, say) that two variables may effect

change in one another simultaneously: Xi,t ←→ Xj,t. However, in simulations time evolves in discrete

steps, t1, t2, . . . , so two billiard balls’ states, X1 and X2, may be influenced only by their own previous

kinematic state

Xi,tk−1
→ Xi,tk and Xj,tk−1

6→ Xi,tk for i = 1, 2 and j 6= i,

until a collision event, occurring at time t? ∈ (tk−1, tk], in which case

Xi,tk−1
→ Xi,tk ← Xj,tk−1

for i = 1, 2 and j 6= i.

That is, the influence of Xi on Xj obeys some inborn speed limit. For this reason we consider it impossible

for concurrent variables Xi,t, Xj,t to be causes of one another. Furthermore, we assume that the rate of

observation, tk − tk−1, is large enough that some variables Xj,tk−1
from the previous time step tk−1 will be

causes of some variables Xi,tk of the present time step tk.

Under these assumptions we have the following theorem.

Theorem 2 For a dynamical system X evolving in discrete time steps t1, . . . , tk, . . . , observed only within

the window [t1, tk], and obeying

Xi,s → Xj,t =⇒ s < t, (12)

we have

MB(Xi,tk) = Pa(Xi,tk). (13)

This is an immediate consequence of the fact that at time tk the variables Xi,tk cannot be a cause of the

concurrent variables Xj,tk , nor variables of the past. Hence, Xi,tk has no descendants at time tk, precluding

both children and spouses: Ch(Xi,tk) = ∅ = Sp(Xi,tk) for all i.

In studying dynamical systems below we will be mainly interested in calculating I(Xi,tk , Xj,tk−1
|Z) for

different families Z ⊂ Xtk−1
= {Xm,tk−1

}m, i.e., determining the causal influence of time step tk−1 on the

19

following time step, tk, though some systems may reward searching for direct causes from earlier system

states, Xtj , j < k − 1.

2.2 Causal Clusters

In this section we discuss the construction of the causal cluster hierarchy (CCH) which is used to organize

(G = (V, E), P) into subnetworks spanning sizes from a single individual to the entire network .

Let us assume that the joint distribution P of the system is causally connected, meaning that it has a

faithful CPN G that is weakly connected: given any two vertices v1 and v2 of G there is a path from v1 to

v2. In particular, we note that the path does not need to adhere to the directionality of the graph’s edges.

Consider the set

MC(X) := MB(X) ∪X, (14)

called the Markov cluster of X; we iteratively calculate Markov clusters of a vertex, written

MCk+1(X) := MC(MCk(X)) for k = 0, 1, 2, . . . (15)

We know that as long as MCk(X) 6= V, the successive Markov cluster MCk+1(X) is strictly larger, since

the Markov cluster of a set H is a superset of the nearest neighbors of H. It should likewise be clear that

because |V| <∞ there exists an integer r(X) ≥ 0 such that

X (MC(X) (MC2(X) (· · · (MCr(X)(X) = V. (16)

In this way the successive clusters of any random variable X exhaust the entire space X of observed

variables as long as the system is causally connected. We will refer to sets of the form MCk(X) for k ≥ 0,

X ∈ X as causal clusters (CCs).

Since for any distinct r.v.s X1, X2 we have

MC0(X1) = X1 6= X2 = MC0(X2), (17)

but also

MCr(X1)(X1) = X = MCr(X2)(X2), (18)

there is some minimal pair s(X1), s(X2) ∈ N such that MCs(X1)(X1) = MCs(X2)(X2). In summary, the

collection of sets in (16) for each X ∈ X forms a partially ordered set and each pair of sequences eventually

coincides.

As a result, the set of all causal clusters within G forms a hierarchy of nested Markov clusters, which we

can express as a branching tree T with the entire observed system X at its root and individual variables at

20

its leaves. We call the system of nested sets a causal cluster hierarchy, or CCH, and refer to the

associated triple 〈G,P, T 〉 as a CCH, or CCH tree.

2.3 Policies

We begin in this section to consider the observed system X not as a tuple of disjoint, one-dimensional

random variables, but as a network of interacting agents, as is natural in complex adaptive systems. This

means that the ith agent ξi may consist of several random variables Xi1 , Xi2 , . . . describing its state. (Not

every group of variables needs to represent an individual in the system - it may be an element of the

environment that reacts to agents’ actions, such as a soccer ball - but we will still refer to such a collection

as an ”agent”.) We then write X = (ξ1, ξ2, . . . , ξn) for the collection of n agents making up the system, and

write ξi → ξj when one or more of the variables Xik of ξi is a direct cause of Xj` , one of the components of

ξj .

An agent’s true policy is their decision making apparatus, or their method of deciding what behavior to

engage in given their internal state and what they observe of the world around them. Outside of very

simple physical systems or models whose internal workings are known, our ability to describe a true policy

is limited. Indeed, in many systems the elementary act of enumerating the possible actions that an agent

might take can be daunting. In practice, we simplify the problem by reducing our definition of the system’s

state to a relatively few coordinates, X, that capture most of the interesting parameters, but this

projection loses information that might, in some number of cases, be the factor on which the actor’s choice

hinges. Likewise, we seek a parsimonious action space A to describe the agents’ potential decisions,

though some granularity of the agents’ behavior is often lost.

In this way, an agent occupying the same state (in our chosen coordinates) on separate occasions might

choose different actions, so that even deterministic systems can appear to exhibit randomness. Moreover,

many of the cases of interest involve biological agents (esp. humans) any one of which may, under the same

circumstances, reach very different decisions upon repeated trials. So it is natural to describe the ith

agent’s processing function, φ, as a map from its observed state MC(ξi) to a probability distribution on

actions a ∈ A:

Definition 11 Given the system (Ω,B, P) with observables X and action space A, a policy is a map

φ : X→ PA. (19)

If we express the action of agent i at time t as ai,t then φi,t(Xt)(ai,t) = P (ξi takes action ai,t at time t).

21

2.3.1 Policies of individuals

Take the system X = (Xtk)k∈N with Xtk = (ξi,tk)i∈I and let φi,t represent the policy of agent ξi at time t.

Due to feedbacks, nonlinearities, and behavioral complexity, even in simulation environments it may be

difficult to express the policy of a given agent. Instead, we restrict ourselves to a family F of functions,

such as neural networks or polynomials, and attempt to locate an effective proxy within that family:

Definition 12 Let X = (ξ1, . . . , ξn) be a collection of agents. The trained policy of agent ξi with respect

to the family of functions F given the training data (ξi,t1 , ξi,t2 , . . . , ξi,tK) is

φi := min
φ∈F
L(φ|ξi)

where L represents a likelihood measure applied to the observations of ξi:

L (φ|ξi) := 〈φ(ξi,tk)(ai,tk)〉k =
1

K

K∑
k=1

φ(ξi,tk)(ai,tk). (20)

In order to compare closed and open systems, we will need to formulate a policy for each agent in the

system. In homogeneous systems the policy may be constant through time and shared among the system’s

agents (φi,t ≡ φ for all i and t). In other cases, each individual may obey a specific set of rules, requiring

their policies to be trained separately, and potentially varying over time.

2.4 System mapping

One fundamental goal of this research is to quantify in a new way how well the dynamics of interest in one

system (called the source system, where we have access to plenty of data) reflect those in another (the

target system). This is done through a method we call system mapping, which is essentially choosing a

hierarchical level of interest, extracting policies at that level, then seeing how well those policies capture

the observed dynamics of the target system.

Consider the CCH of the system of agents Ξ(A) = (ξ1, . . . , ξn) governed by (Ω,B, P), and suppose we are

invested in subsystems of a given size, between S1 and S2, say. Choosing Si, i = 1, 2, to be O(1)

(individuals), O(n1/2) (local subgroups), or O(n) large submodules), we define the cluster size of interest.

We collect from the full CCH T = {MCk(ξj) : k = 0, . . . , r(ξj), j ∈ I} those causal clusters of a given size

CS1,S2
:= {C ∈ T : S1 ≤ |C| ≤ S2} . (21)

If this source system behaves similarly to the target system, Ξ(B) = (η1, . . . , ηm) at the scale defined by Si,

then the policies trained on the clusters in CS1,S2
should reflect what we observe in the target system. For

22

simplicity we will assume that the system Ξ(A) is homogeneous, so that policies are constant and agents

share the same policy.

Definition 13 Let {(ai,t)i∈??} be the empirical data gathered from the target system Ξ(B), and let {φCj
} be

the collection of policies for the clusters Cj in CS1,S2
. We define the system affinity of Ξ(A) and Ξ(B) at

scale (S1, S2) by

Φ
(A,B)
S1,S2

:=
1

|CS1,S2 |
∑
j

L
(
φCj |{ηi,t}m1

)
(22)

This measure is large when the policies {φCj
} predict well how Ξ(B) changes through time. In practice,

many of the causal clusters within C may have a significant proportion of shared agents, or may be rapidly

changing over time. To better extract typical cluster behavior, one may want to filter the set CS1,S2
to

mollify the effect of overemphasizing certain agents’ activity or remove low-fidelity policies.

23

3 Application I: Flocking Models

All of the foregoing theory was first tested in an entirely simulated environment where agents {ξ1, . . . , ξn}

inhabiting a torus T form one or more flocks as they travel through the space. Using simple flocking

models we compare distinct emergent group phenomena in silica, and show that in a simple,

easily-visualized setting the tools of CPN inference, policy learning, and system mapping can be

coordinated to establish a model-to-model metric of similarity.

Working with simulated data, we create multiple systems with different emergent behaviors (whole group

flocking vs. avoidant subgroup flocking). For each such model we infer the underlying CPN using the

HITON-EZK algorithm, describe the policies at different scales using simple linear regression models, and

then demonstrate that given “empirical” data, positional data generated by an unknown underlying model,

system mapping can accurately determine the model which most closely resembles the generative model.

As a final exercise we compare policies of a large-scale CC, representing a coherent flock, to those of

individual agents. We see that the policies of the large groups are essentially the same as those of

individuals: if two flocks are mutually avoidant, their policies upon collision reflect those of two individual

avoidant agents. So we see that the emergent behavior of flocks acting as superorganisms is captured by

the similarity of policy functions over the two scales. This is a first example of how comparing policies can

be used to draw an analogy between different subsystems.

3.1 Models and data

We begin with a classical model of flocking behavior, commonly referred to as the Toner and Tu model

[15], in which the agents (called boids) mimic the direction of travel of the agents close to them while

traveling within T2, a 2-torus of side length L (throughout we take L = 1). By shifting the radius of

interaction, r ∈ R≥0 (that is, what counts as ‘close’ to the focal agent) the system will transition from a

disorganized state where the flock as a whole has little to no collective velocity, to an organized state where

many of the agents are aligned and the flock has a distinguished direction of travel (the mean velocity is

clearly nonzero).

3.1.1 The model of Toner and Tu

Each agent ξi is defined by their position (xi, yi) := (ξi(1), ξi(2)) ∈ T2 and heading θi = ξi(3) ∈ S1. The

model has parameters for agent speed, v, interaction radius, r, and the magnitude ε of the driving noise for

24

the agents. The injected randomness takes the form of a perturbation of the ith boid’s heading at time t by

εzi,t, where the {zi,t} are independent standard normal random variables. At time t = 0 we initialize all

agents’ positions and headings by sampling from T2 × S1 uniformly at random, and for successive time

steps the agents’ states are updated according to the following set of equations:

Positions are incremented faithful to the current heading θ·,t

xi,t+1 = xi,t + v cos(θi,t),

yi,t+1 = yi,t + v sin(θi,t),

while the heading is determined by summing the influences of all nearby agents, who are indexed by the set

Bi,t(r) = {j 6= i : dT2

(
(xi,t, yi,t), (xj,t, yj,t)

)
< r},

i.e., those agents contained in the ball of radius r (with respect to dT2 , the standard metric on the torus)

about the ith agent at time t. The influence of agent j on agent i, written f(ξi, ξj), is a velocity vector, and

for the classic Toner and Tu model it is simply the velocity of the jth agent:

f(ξi, ξj) = 〈cos(θj,t), sin(θj,t)〉.

Finally, up to a noise term εzi,t, the heading θi,t+1 is chosen to align with the vector sum of all influences:

∆i,t = 〈cos(θi,t), sin(θi,t)〉+
∑

ξj∈Bi,t(r)

f(ξi, ξj), (the desired direction)

θi,t+1 = tan−1

(
∆i,t(2)

∆i,t(1)

)
+ εzi,t.

For these models, the output of the simulations are time series of n agents’ positions and headings in a

three-dimensional ambient space, that is, trajectories taking values in
(
T2 × S1

)n
corresponding to the

spatial variables (x, y) and the heading, θ.

3.1.2 New models

To create new systems exhibiting different emergent behaviors, we alter the classical model (where all

agents are interchangeable and homophilic) so that the boids have a ‘species’ and they interact with other

boids based on their species. The species are constant through time in our models, so rather than treat

them as a fourth coordinate for each boid, we consider the boid-species assignment a new parameter

determining the model.

The modes of interaction we allow are friendly (F), avoidant (A), or neutral (N). This interspecies

behavior is summarized by an interaction matrix I; the (a, b)-entry of I takes its value in {F,A,N} and

defines the way nearby agents of species b influence those of species a. In particular,

25

Figure 5: (A) A flocking model with two species of boid which seek to avoid one another. (B) The classical

Toner and Tu model, executed with the same parameters.

• if Ia,b = F , then agents of species a attempt to align their heading with those of species b,

f(ξi, ξj) = 〈cos(θj), sin(θj)〉.

• if Ia,b = A, then agents of species a avoid members of species b, moving in the opposite direction:

f(ξi, ξj) = 〈xi − xj , yi − yj〉.

• if Ia,b = N agents of species a will ignore those of species b, f(ξi, ξj) = 〈0, 0〉.

Note that agents within a given species may avoid one another, or ignore one another, rather than attempt

to flock together. See Figure 5 for examples of a modified model with two species, I =

 F A

A F

 and the

original Toner and Tu model, I =
[
F
]
, in their steady states, when the radius r is large enough for

flocking behavior to emerge.

3.2 Methods

Let Nd(m,σ) indicate a normal probability distribution on Rd with mean m and standard deviation σ, and

define the embedding

ρ : R3 → T2 × S1,

(x, y, θ) 7→ (x mod L, y mod L, θ mod 2π),

26

along with the partial inverse

ρ−1 : T2 × S1 → R3,

(x, y, θ) 7→ (x, y, θ),

3.2.1 CPN inference

We begin with the task of estimating a faithful CPN for the system. This is done by executing a simulation

of a flocking model – we initialize the system with chosen boid types (see Table 1 for the flock membership

data), and their positions and headings sampled uniformly at random from T2×S1 – for T time steps, then

saving the system’s history of states Ξt = (ξk,t)
n
k=1, t ∈ {0, 1, . . . , T}, to a data file. Then for those times t

that we are interested in computing the CPN, we pass the recorded state into the HITON-EZK algorithm,

as well as parameters σ1, σ2 > 0 which define the distributions that the states ξk,t will be resampled from.

In order to sample from µKi,j in step 6 of Algorithm 1, we form the perturbed agent states

ξ′k,t := ρ
(
ρ−1 (ξk,t) + εk

)
where εk ∼ ‘

δ(0,0,0) if k ∈ K,

N2(0, σ1)×N1(0, σ2) otherwise.

Here δx represents the Dirac delta function that takes the value 1 at x and 0 elsewhere. This means that

ξ′k,t is unchanged if k lies in the conditioning set K, while for all other agents their positions and headings

are perturbed by some normal random variable. Write Ξ′t = (ξ′k,t)
N
k=1 for the full set of perturbed system

variables

In perturbing this system we want to sample states that are different enough from the current state that

the agents’ environments will be affected (a change is registered), but we don’t want to sample in such a

way that the new state Ξ′t has nothing to do with the original state Ξt. This is because any agent in the

system may affect any other given the right conditions, so creating a new sample from whole cloth can

introduce a bevy of new causal connections, some of which will obfuscate the changing distribution of ξi

under changes in ξj . By making relatively moderate changes in agents’ positions and headings we don’t

fundamentally alter the state of the system, preserving most of the behavior of interest.

This is essentially an assumption that the action of an agent is (roughly) a continuous response to the state

of the system, so by keeping perturbations reasonably minor we can explore the variable response without

introducing too many new confounding variables; these may average out over many samples, but if we

avoid introducing them in the first place we can deduce causal influence with fewer samples. However, it is

worth noting that if an agent is influenced by a large number of other agents (which can happen with the

27

Model Flock membership Parameters (r, v, ε, σ1, σ2) Simulation time t′ Interaction matrix

A (10) (0.2, 0.5, 0.1) 1 [F]

B (30) (0.2, 0.5, 0.1) 1 [F]

C (20, 20) (0.1, 0.5, 0.1) 1

 F N

N F

D (20, 20) (0.1, 0.5, 0.1) 1

 F A

A F

E (1, 1) (0.1, 0.5, 0.1) 1

 F A

A F

Table 1: Parameters determining the flocking models used in validating system mapping.

models of this section after large flocks have formed) one may need larger perturbations to lower the

number of unconditioned agents influencing the target agent ξi. In other words, the threshold for a

“minor” perturbation increases as the degree of the CPN increases.

Acknowledging this, we choose the variances σ1, σ2 so that nearby agents may pass in or out of each

other’s interaction radius (σ1 ≈ r/2) and their heading will vary over a significant portion of the interval

[0, 2π) (σ2 ≈ π/6).

With a CPN for the system Ξ at time t in hand, one can immediately compute the associated CCH and

construct the CCH tree. We remark that we have the ground-truth CPN available to us, wherein

ξ1 ∈MB(ξ2) and ξ2 ∈MB(ξ1) if and only if the two agents lie within a distance of r of each other. Thus

we can construct the true CPN and CCH tree for comparison with those inferred via HITON-EZK.

3.2.2 Policy learning

Policy learning for causal cluster MCk(ξi,t) was performed by a simple linear regression among the

neighboring boids.

3.2.3 System mapping

With the policies in hand, we calculate the system affinity Φ
(·,·)
1,1 among the models. We want to see how

well the micro-scale behavior is captured among models with very different behaviors (e.g. comparing the

28

Test number Generative model Source models CC size Time scale

1 A B, C, D, E, F 1 1

2 A A 1 1

....

Table 2: Tests run to judge the efficacy of system mapping. The generative model is the model from Table

1 that was used to create the faux-empirical data; the source models are those whose policies are mapped

onto the empirical data to test for agreement. We operate at different scales across tests, cosidering CCs of

a given cardinality (one, for individual policies; O(n) for whole flock behaviors).

interactions of model A, which are always friendly, to a model featuring avoidant behavior such as D), but

we also want to see the evolution of causal clusters and their policies as the agents naturally form

collectives. A natural hypothesis we might form is that both F N

N F

 and

 F A

A F

interaction types will lead to two macro-scale groups over time, so that their long-term, large-scale

structures might be very similar, while their micro-scale interactions are quite different.

We then perform several system mapping experiments to test these hypotheses; Table ?? summarizes the

models that are compared to one another and at what scale. In particular, we measure the scale of interest

by the number of agents belonging to the CC whose policy is being tested against.

3.3 Results

For each flocking model type we executed a 1000 step simulation, and selected a subset of 5 time steps

featuring a range of flocking behaviors (e.g. disorganized, many small groups, large flocks, or collisions of

subgroups), and calculated CPNs and policies for each.

For each of the models in Table 1 we test their agent-level policies against novel simulation data from each

separate model.

Last, we compare the functional form of the regression for a set of colliding flocks of different species to

that of colliding individuals of different species. One can see by observing the state of the flock over time

that its state changes occur over slightly longer time scales, as the change in heading takes a short time to

propagate through the flock.

29

4 Application II: Google Research Football and Soccer Play

As an application of a complex social-spatial system we are pursuing the same line of research as detailed

in the previous section, but applied to Google Research Football (GRF) data. The GRF program is an

open-source project recently developed and employed by Google to investigate the competitiveness of

soccer teams composed of artificial agents (ML models) trained under various reinforcement learning

protocols. Included with the package (hosted at https://github.com/google-research/football) are stock

agent behaviors, hard-coded by the developers, which can be used immediately to generate gameplay.

The authors have created a GitHub repository [13] holding our fork of the GRF codebase.

4.1 Codebase structure and modifications

While there is documentation included with the GitHub project, we describe briefly here the major

changes required to achieve these changes to facilitate continued development and extensions of this work.

We have modified this codebase extensively to

1. expose more variables of the players’ states to the python environment,

2. record basic variables (the data described in Table 3) periodically during simulation, and to

3. run multiple simulations in parallel.

The final item is critical for generating data efficiently, and can be done by writing a wrapper for the core

GRF simulation function. In contrast, the first two items required intrusive changes to the codebase, and a

deeper understanding of the software’s internal composition.

This is due to the fundamental structure of the project. The soccer gameplay is simulated and rendered

within a C++ package (largely contained in the third_party/gfootball_engine/src/ folder of the GRF

project). This package is then built and compiled with certain objects exposed to a Python environment

using the Boost C++ package. In particular, a GameEnv Python object allowing Python scripts to

initialize and execute game instances and a SharedInfo struct exposing ball and player positions are

available. For (1) above, we need to modify the PlayerInfo class of src/defines.hpp header file to hold

the player’s action (an element of the enum e FunctionType). This can then be accessed once we update

the PlayerInfo class defined in ai.cpp, which delineates the structure of the C++ objects when exposed to

the Python environment through the BOOST PYTHON MODULE of the boost library. With the

30

Field Data structure Frequency

Player position 2-vector Per player

Player direction 2-vector Per player

Ball position 2-vector Unique

Ball direction 3-vector Unique

Ball rotation 3-vector Unique

Player team ±1 Per player

Player possession Boolean Per player

Player skill level float in [0, 1] Per player

Player fatigue level float in [0, 1] Per player

Current player action Categorical Per player

Score 2-vector Unique

Table 3: Data output from GRF simulations.

variables of interest available in a SharedInfo object during game execution, we can arrange to have them

recorded in a .yml file fairly easily (item (2)). This occurs in gfootball/env/football_env_core.py, in

the step method, for each time step that is a multiple of a fixed number of steps. (Each step represents a

tenth of a second, so a typical choice is to record the summary game state every fifth step, or half second.)

This information is enough to observe the evolution of a soccer match over time and create observational

time series of player states and actions. But if we want to perform any interventions we need to have the

ability to revisit the game in a particular state, adjust some variables, and continue execution from the new

state to observe the effect of the perturbation. This is particularly difficult, as it requires manipulating the

objects defined and held in C++ memory and execution (NB: initializing a game using the built-in

functions resets player motion, interrupting play). To do this, we make use of the boost::serialization

library (this requires updating third_party/gfootball_engine/CMakeLists.txt to locate and link the

serialization library).

The additional goals we have to employ the HITON-EZK algorithm and complete the system mapping

tests require further edits to

• allow loading and saving entire game states from binaries, and

• perturb loaded states among select variables.

31

Our research team has succeeded in creating binary files to hold the ball state and a SpatialState struct

for each player, which contains their position, direction, etc. However, the process of injecting this data

back into the game has proven difficult, as initializing the players may involve the simulator’s graphics

engine, as well as humanoidSourceNode objects, which hold the arrangement of a player’s limbs, head, and

torso. It remains to develop the functionality to recreate the players in action, for the purpose of

repeatedly sampling their behavior under perturbations.

4.2 Methods

In order to talk about the state of the soccer pitch and players we make the following definitions. Given a

player ξi, we define their own team to be TA(ξi) or just TA, the opposing team as TB , and the set of all

players to be T = TA ∪ TB . The team in possession of the ball is denoted TO, the team on defense, TD.

The line connecting two points p1 and p2 is expressed as p1p2, and if d is the usual euclidean distance,

defined between two sets by

d(A,B) = inf
x∈A,y∈B

‖x− y‖.

(Note we write d(p1, p2) instead of d({p1}, {p2}).) Thus, the distance from a point p3 to a line between

two other points is d(p3, p1p2), and finally, the field boundary is denoted ∂F .

We define the following secondary variables in order to transform the raw positional data into terms that

are more likely to correspond to features influencing a player’s choices:

1. distance to nearest opponent,

min
y∈TO

dx(ξi, ξj),

2. width of passing lanes,

min
pD∈TD

d(pD, p1p2), p1, p2 ∈ TO,

3. distance to the field’s boundary,

d(p, ∂F),

4. distance to the nearest opponent passing lane,

min
pB1,pB2∈TB

d(pA, pB1pB2).

In inferring players’ policies we would employ the above processed variables to ease the machine learning

task. Due to the current limitations of the GRF package, as well as the scarcity of positional soccer data,

32

the task of training such policies and performing system mapping from the simulation environment to live

game data remains.

4.2.1 Empirical data

A group of researchers in Tromsø, Norway used specialized sensors attached to soccer players from the

Tromsø IL team to record their motion and estimate their energy expenditure [8]. There are thus several

soccer games with player position data available for use online (see the paper), however, in none of the

games provided did the opposing team (Anzhi Makhachkala, Tottenham Hotspurs, or Stromsgødset IF)

also wear these sensors and consent to their data being collected and distributed. Moreover, the location of

the ball on the pitch is also unknown.

In order for policies from simulated systems to be compared to real-world data, the two must share a

common set of coordinates. In this instance then, we would need to train our policies from GRF data

limited to include only a player’s own team, and not the ball itself. The policy would have to infer whether

a player was in possession of the ball as well, which is perhaps the most important factor in determining

what action a player might take. This is a significant challenge to performing the desired system

comparison; for instance, items (1), (2), and (4) are no longer calculable in the list of secondary variables

above.

The team came across one other potential soccer dataset named Magglingen2013 [10]. This repository had

a record of the position and direction of all players and the ball during two professional soccer matches,

recorded at a frequency of 10Hz. The data is no longer hosted, but through personal communications the

research team was able to obtain a short snippet of one game, consisting of about 60 seconds of gameplay.

This data is now available in a JSON file located at worlds/football/magglingen2013/emp_play.json

within the GitHub repository github.com/thepredictionlabllc/worlds.git.

33

Case-study 3: Information Spread and Conflict on Twitter

Online social networks represent an interesting and important counterpart to the other example systems we

have chosen to study so far, from their structure as dynamical systems to their broad societal relevance and

importance to national security. From a modeling perspective, social networks have a discrete, rather than

continuous state and action space. Furthermore, agents in social networks typically have their own

identities, with each agent occupying a unique position in a heterogeneous network and exerting different

influence from the other agents in the network. The slowly evolving structure of social networks and the

unique agent identities gives social networks a Lagrangian character, distinguishing them from Eulerian

systems, like flocking or Google Research Football, where agents regularly switch positions and may have

nearly identical policies[4]. The uniqueness of agents presents a tremendous challenge for identifying

policies, which we hope can be mitigated by the availability of large amounts of data and the existence of

prior knowledge that constrains the local causal networks, for example the prior information from follower

networks.

We selected social interactions on Twitter as an example system for policy discovery. Users on Twitter

write 280 character posts, called tweets, which can include media content or links in addition to text. Users

interact by liking, retweeting, or commenting on the tweets that appear in their timeline, and use short

phrases called hashtags to identify the context of a tweet or as a short way to signal a message. Each user’s

timeline consists of tweets from users in their follower network. Activity on twitter exhibits a wide range of

interesting dynamics: tweets and hashtags can propagate well beyond the followers of the user that

originates them, in some cases reaching the entire network[9]. Thus Twitter has tremendous potential for

information dissemination[2], for political debate and discussion[16], or for the spread of disinformation[5].

The Twitter network contains numerous sub-networks which center on topics, such as political campaigns,

scientific issues such as climate-change, and current events such as the SARS-CoV2 pandemic. These

sub-networks are highly connected and contain numerous examples of repeated, sometimes adversarial

interactions, which can range in complexity from simple, two-party political races to nuanced arguments

over the best way to suppress covid or decarbonize the electricity grid. By focusing on these sub-networks,

we can substantially reduce the computational difficulty of policy identification while taking advantage of

the persistent, complex interactions that take place there.

A policy for a twitter user consists of a probability distribution on the set of liking, retweeting, or

commenting on items in their timeline. Twitter users have information on how other users interact with

they content they see, and are likely to take similar actions to agents they agree with and take opposite

actions to agents that they disagree with. User policies thus may reflect the allegiances of twitter users. We

34

propose to use a handful of simple models of contagion to learn the policies of twitter users in selected

sub-networks, enabling us to apply our open and closed worlds framework for model-comparison. We

selected models of social contagion on heterogeneous networks, with varying probabilities of behavior

transmission at different points in the network, and a range of transmission rules ranging from simple to

complex contangions[18, 9]. Concretely, our system has N agents, each of which has a state si,t, defined as

the state of the ith user at time t. The values of s belong to the action space

S = {Null,Retweet,Comment}. We then consider the propagation of each tweet beginning from an initial

condition where a single focal agent has state sf,0 = retweet and all other agents have state Null. At each

time step, each neighbor of an active agent randomly selects a neighbor from the other agents with

probability of agent i choosing agent j defined as p0,ij , where pij = 0 if i does not follow agent j. Then,

agent i updates their state by sampling from their policy distribution. If agent j is inactive, agent i

remains inactive, and if agent j is active, agent i will choose the same state as agent j with probability

pcopy,ij , and the opposite state with probability popp,ij . With probability pnull,ij = 1− pcopy,ij − popp,ij ,

agent i keeps the same state. Each active agent has a probability of becoming inactive each time step of

pinactive, though this agent may become active again responding to other agents later.

The policies described above represent a simple contagion process, where each exposure of an agent to an

action leads to an independent probability of action. Although this may be a good way to model the

policies of agents in a social network, other processes, in particular complex contagions[18], have also been

proposed to describe how agents react to information. In a complex contagion the chance of transmission

of a behavior is a non-linear function of the states of the neighbors of a given agent. For an agent with

active neighbors we can write:

pretweet,i = G

(∑
Ni

Iretweet,ij(sjt)

)
(23)

pcomment,i = H

(∑
Ni

Iretweet,ij(sjt)

)
(24)

pnull,i = 1− pretweet,i − pcomment,i, (25)

where the functions G and H saturate for large values of their arguments, are non-negative, and satisfy the

constraint G+H ≤ 1.

Simple and complex contagion give us several multiple frameworks to compare via system mapping. We

have begun scraping twitter for data from several active sub-networks, beginning with the US

Congressional election in NJ-02, and soon to potentially include sub-networks based on SARS-CoV2 and

climate change mitigation. In each case, we begin by identifying a set of key Twitter accounts by hand and

build a sub-network by examining the accounts which they follow, their followers, and accounts which

35

interact strongly with them. We repeat this process to find a highly cliquish sub-network with interactions

focused on a single topic. Then we scrape Twitter and download the record of tweets, comments, retweets,

and hashtags used by these accounts. We consider each original tweet as a potential contagion event, and

use the spread or lack-thereof within the network to parameterize models of simple or complex contagion

based on each sub-network, within a Bayesian statistical framework.

36

From Collective Behavior of Animals to Social Behavior in Humans

Complex Systems comprise agents interacting at small scales with their own policies, leading to emergent

behavior at large-scales[?, ?]. Social systems belong to the class of complex systems[?] and posses a variety

of societally relevant emergent phenomena. Herding behavior, where agents adopt the same actions as their

neighbors, lead to some of the most dramatic events in social and economic systems, including bubbles and

market crashes in economics[?, ?], the spread of rumors and misinformation, the changing of social

norms[?], even to stampedes at crowded events[?]. Clustering during group formation or opinion dynamics

can lead to the separation of agents into a small number of groups with distinct states, leading to

polarization. Small-scale changes in the system can lead to abrupt shifts on the largest scale, critical

transitions, which can describe political revolutions and other sudden societal shifts. Collective behavior

can also reveal information about the underlying system[?], which is sometimes called the Wisdom of the

Crowds[?], enabling agents with incomplete information to collectively combine their signals to predict

prices, future events[16], or even act as detectors of illicit behavior[?].

In the past decade, we have made substantial progress modeling collective behavior in animal groups, a

revolution driven by improvements in data collection and modeling. In particular, there has been a

transition from simple models to learning the actual policies that animals use to make decisions, and this

has led to improved prediction and understanding of macroscopic phenomena[?]. Detailed measurements of

the sensory environments of animals, enabled using computer vision, catalyzed accurate modeling of their

local causal neighborhoods and the policies they use to make decisions.

Human social behaviors show greater complexity than animals, but we have many analogies we can

leverage and many of the same theoretical tools apply. Behaviors like herding, collective cognition, and

simple heuristics for decision making exist in humans as well as in animals. Data exists on many aspects of

human behavior, from out motions on the soccer field, to our movements through our interactions in

cyberspace, and this high resolution data equals or exceeds the data available on animals. These changes

have begun to transform the social sciences from a qualitative to a quantitative field, and we believe that

the next step will allow the application of the same sophisticated tools which allow us to understand

animal collectives to solve applied problems in the computational social sciences.

There exist huge potential payoffs for understanding human collective behavior, and one route to getting

there is taking cues from successes studying animal groups. We increasingly live in a highly connected

society, and collective behavior regularly has global impacts. These impacts can happen quickly, as rumors,

fake news, and disinformation go viral online. On slightly longer time-scales, networks can grow around

misinformation, leading to increased polarization and vulnerability to its spread. Collective spread of

37

misinformation and the resulting polarization has been weaponized by our adversaries and now represents

a grave national security threat. The SARS-CoV2 pandemic rapidly spread around the globe, dominating

our lives throughout 2020, and changes in individual behavior in response to the pandemic shaped its

spread and represent one of the key tools for fighting it. To meet these challenges we need to build a

comprehensive understanding of collective behavior, from the bottom up by understanding the policies by

which humans make decisions, to the local causal neighborhoods which propagate their influence, and the

largest macroscopic scale on which collective behavior emerges.

References

[1] Constantin F Aliferis, Alexander Statnikov, Ioannis Tsamardinos, Subramani Mani, and Xenofon D

Koutsoukos. Local causal and markov blanket induction for causal discovery and feature selection for

classification part i: algorithms and empirical evaluation. Journal of Machine Learning Research,

11(1), 2010.

[2] Eytan Bakshy, Jake M Hofman, Winter A Mason, and Duncan J Watts. Everyone’s an influencer:

quantifying influence on twitter. In Proceedings of the fourth ACM international conference on Web

search and data mining, pages 65–74, 2011.

[3] Jalal Etesami, Kun Zhang, and Negar Kiyavash. A new measure of conditional dependence. arXiv

preprint arXiv:1704.00607, 2017.

[4] G Flierl, D Grünbaum, S Levins, and Donald Olson. From individuals to aggregations: the interplay

between behavior and physics. Journal of Theoretical biology, 196(4):397–454, 1999.

[5] Srijan Kumar and Neil Shah. False information on web and social media: A survey. arXiv preprint

arXiv:1804.08559, 2018.

[6] Judea Pearl. Probabilist reasoning in intelligent systems. Morgan Kauf-mann, San Mateo, California,

1988.

[7] Judea Pearl. Causality. Cambridge university press, 2009.

[8] Svein Arne Pettersen, Dag Johansen, H̊avard Johansen, Vegard Berg-Johansen, Vamsidhar Reddy

Gaddam, Asgeir Mortensen, Ragnar Langseth, Carsten Griwodz, H̊akon Kvale Stensland, and P̊al

Halvorsen. Soccer video and player position dataset. In Proceedings of the 5th ACM Multimedia

Systems Conference, MMSys ’14, page 18?23, New York, NY, USA, 2014. Association for Computing

Machinery.

38

[9] Daniel M Romero, Brendan Meeder, and Jon Kleinberg. Differences in the mechanics of information

diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In Proceedings of

the 20th international conference on World wide web, pages 695–704, 2011.

[10] Martin Rumo. Magglingen2013, 2013.

[11] Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation, prediction, and

search. MIT press, 2000.

[12] Bharath K Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf, and Gert RG

Lanckriet. Non-parametric estimation of integral probability metrics. In 2010 IEEE International

Symposium on Information Theory, pages 1428–1432. IEEE, 2010.

[13] LLC The Prediction Lab. Fork of https://github.com/google-research/football, 2021.

[14] Mathew Titus. hiton ezk github repository, 2021.

[15] John Toner and Yuhai Tu. Flocks, herds, and schools: A quantitative theory of flocking. Phys. Rev. E,

58:4828–4858, Oct 1998.

[16] Andranik Tumasjan, Timm O Sprenger, Philipp G Sandner, and Isabell M Welpe. Predicting elections

with twitter: What 140 characters reveal about political sentiment. In Fourth international AAAI

conference on weblogs and social media. Citeseer, 2010.

[17] Cédric Villani. Topics in optimal transportation. Number 58. American Mathematical Soc., 2003.

[18] Duncan J Watts. A simple model of global cascades on random networks. Proceedings of the National

Academy of Sciences, 99(9):5766–5771, 2002.

39

